
HOMEWORK 15

Due date:
Ex: M.2, page 411 of Artin’s book.

For a reference, we record the Minkowski bound below.

Theorem 0.1. Let F be a number field with [F : Q] = n. Let OF be the ring of integers of F . Let
2s be the number of non-real embeddings of F ↪→ C. Then in each ideal class of OF , there is an
ideal a such that

Nm(a) ≤ BF

with

BF =
n!

nn

(
4

π

)s

|∆F |1/2.

Here ∆F is the discriminant of F .

Problem 1. Let F be a number field and let p be a prime ideal of OF . Show that there exists an
integer prime p ∈ p. Show that Nm(p) is a power of p.

Problem 2. Let m be a square-free integer such that m ≡ 1 mod 4. Let F = Q(
√
m). Then

OF = Z[α] with α = −1+
√
m

2 . Let p ∈ Z be a prime integer. Determine how the ideal pOF

decomposes in OF . Determine primes p such that pOF remains prime in OF .

Answer: it depends on (mp ), namely, where m is a square or not in F×
p . As a very special case

of the above problem. For F = Q(
√
−7). Determine how 2OF decomposes into product of prime

ideals.

Problem 3. Show that OF is a PID for F = Q(
√
−m) and m = 7, 11, 43.

Problem 4. Determine the class group of Q(
√
m) for m = −19,−21,−47, 15,−26..

The answer is given in Page 399 of Artin’s book for m = −21,−47. You are encouraged to prove
everything in the table (13.8.1) of page 399. For m = 15, we have Cl(Q(

√
15)) ∼= C2. For m = −26,

its class group is C6. Find generators for each class group.

Problem 5. Consider F = Q(α), where α is a root of f = x5 − x + 1. It is known that the
discriminant of f is 19× 151 and f has only one real root and thus there are 4 non-real embeddings
F ↪→ C. Show that F is a PID.

Problem 6. Find all integral solutions of the Diophantine equations

(1)
y2 = x3 − 2.

(2)
y2 = x3 − 74.

Some useful facts. The class group of Q(
√
−2) is trivial. The ideal class group of Q(

√
−74) is

cyclic of order 10.
Also, try the equation y2 = x3 − 7. It is hard. The solutions are (2,±1), (32,±181). Here is

the issue. If we factorize y2 + 7 = (y +
√
−7)(y −

√
−7), we cannot guarantee that (y +

√
−7) and

(y −
√
−7) are coprime. Actually, they are not. Try to explain the equality 1812 + 7 = 323 = 215 in

the ring OF where F = Q(
√
−7). How does 181 +

√
−7 decompose into products of primes? Keep

in mind that we know the ring OF is a UFD. Answer:

181 +
√
−7 = −

(
1 +

√
−7

2

)14 (
1−

√
−7

2

)
.
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2 HOMEWORK 15

Moreover, try the equation y2 = x3 − 26. It is known that the class group of Q(−
√
26) is C6.

Thus this one is hard if you want to repeat the usual process. (Solutions for y2 = x3−26 are (3,±1)
and (35,±207).)

The following is a relatively general result regarding the equation y2 = x3 − d. In particular, it
generalizes the cases in the above problem.

Problem 7. Let d > 1 be square free and d ≡ 1 or 2 mod 4. Assume that the class number of
Q(

√
−d) is not divisible by 3. Then y2 = x3 − d has an integral solution iff d is of the form 3t2 ± 1.

The solutions are then (t2 + d,±t(t2 − 3d)).

You should be able to prove this result on your own. But of course, you could find a proof
anywhere else. If d ≡ 3 mod 4, the result is a little bit harder. The reason is, in this case, the integer

ring is Z[α] with α = −1+
√
−d

2 , which is not Z[
√
−d].

You might be wondering if the same method as above could be used to solve equations of the
form y2 = x3+d for d > 0. Actually it is very hard and the reason is that the units of OF is infinite
if F = Q(

√
d) if d > 0 is square free. Here is one example. We know that (x, y) = (5, 12) is an

integral solution of this equation y2 = x3 + 19. Try to think about what would happen if you want
to use the method covered in class to solve it. We know that the ring Z[

√
19] is a PID. The units of

Z[
√
19] are of the form ±(170− 39

√
19)n.

Equations of the type y2 = x3 + k is called Mordell equation, which always have finitely many
integral solutions. However, they could have infinitely many rational solutions. Example: The
equation y2 = x3 − 2 has rational solutions (x, y) = (1.29, 0.383) (Check this with a calculator). If
you want to learn more about these equations, search the key word “elliptic curves”.

Problem 8. Let F be a number field. Show that there exists a finite extension L/F such that for
each ideal a ⊂ OF , the ideal aOL is principal.

See this link for a proof.

The class group can be defined in a different way, which is given in next problem. We first
introduce the terminorlogy fractional ideal. Let F be a number field and let OF be its ring of
integers. A fractional ideal of OF is a nonzero OF -submodule a of F such that da = {dx : x ∈ a}
is an ideal of OF for some d ∈ OF . More formally, a fractional ideal is a subset a ⊂ F such that:
(1) a is an abelian group under addition; (2) ax ∈ a for any a ∈ OF , x ∈ OF ; and (3) there exists a
d ∈ OF such that da ⊂ OF . Note that these conditions imply that da is an ideal of OF . Note that
a fractional ideal is not necessary in OF . On the other hand, an ideal a ⊂ OF is also a fractional
ideal. To distinguish fractional ideals and ideals in OF , an ideal a ⊂ OF is called an integral ideal
of OF to emphasize it is in OF . For two fractional ideals a, b, we define

a · b =
{∑

aibi|ai ∈ a, bi ∈ b
}
.

Problem 9. (1) Let a be a fractional ideal, show that one can decompose a = pe11 . . . pekk with
pi prime and ei ∈ Z.

(2) Let I(OF ) be the set of all fractional ideals. Show that I(OF ) is an abelian group with respect
to the ideal production.

(3) Show that I(OF ) is a free abelian group with generators of all prime ideals of OF .
(4) For any a ∈ F×, show that (a) := {ax : x ∈ OF } is a fractional ideal. Thus there is a

homomorphism
F× → I(OF )

defined by a 7→ (a). A fractional ideal of the form (a) for some a ∈ F× is called a principal
fractional ideal.

(5) Let P (OF ) be the subgroup of all principal fractional ideals. Show that the quotient I(OF )/P (OF )
is isomorphic to Cl(OF ).

Problem 10. Let d ∈ {19, 43, 67, 163} and let K = Q(
√
−d). Show that OK is not an Euclidean

domain.

https://math.stackexchange.com/questions/241348/every-ideal-of-an-algebraic-number-field-can-be-principal-in-a-suitable-finite-e
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Note that OK is a PID since OK has class number 1. For the case when d = 19, this is Problem 4.
Other cases can be checked in the same way. This problem gives us several examples of PID which
are not ED. Hint: By contradiction. Suppose OK is an ED. Let λ : OK → N is a size function.
This means that for any a, b ∈ OK , b ̸= 0, we can write a = bq + r with b, r ∈ OK and r = 0
or λ(r) < λ(b). Take x ∈ OK − O×

K − {0} such that λ(x) = min
{
λ(y) : y ∈ OK −O×

K − {0}
}

is
minimal. Then for any a ∈ OK , we have a = qx + r with r = 0 or λ(r) < λ(x). The assumption
shows that r ∈ O×

K ∪ {0}. We have O×
K = {±1}. This shows that there is a principal ideal I = (x)

such that Nm(I) = |OK/I| = 2 or 3. The rest is easy.

1. For your Winter Break

The next several problems might be hard. You don’t have to submit solutions of them. But try
them in the Winter break.

Problem 11. Let p be a prime number of the form 4n − 1 for some positive integer n. Show that
Q(

√
−p) has class number 1 iff m2 +m+ n is prime for all m with 0 ≤ m ≤ n− 2.

Since Q(
√
−163) has class number 1, we get that m2 + m + 41 is prime for all m with m =

0, 1, . . . , 39, which was observed by Euler.

Problem 12. Let α be a root of x3 − x − 4 and let F = Q(α). Show that B =
{
1, α, α+α2

2

}
is an

integral basis of OF . Moreover, show that F has class number 1.

2. Ramanujan constant eπ
√
163

The number eπ
√
163 is called the Ramanujan constant, and its numerical value is

262537412640768743.9999999999992500725972...

As you can see, it is almost an integer. There is a deep reason behind it. See this link for some
discussions. One reason related to this is the field Q(

√
−163) has class number 1. It is related

to j-invariants of elliptic curves, Kronecker jugendtraum (Hilbert’s 12th problem). Recall that, we
know that every finite abelian extension of Q is contained in certain cyclotomic field Q(ζN ). In other
words, one can obtain every finite abelian extension of Q by adjoining the roots of polynomials of
the form xN − 1 = 0. The Hilbert 12th problem asks the following question: given a number field
F , to obtain all finite abelian extension of F , what are the algebraic numbers (or roots of what
kind polynomials) should we adjoin to F? For general F , there is no answer yet. But for fields
like Q(

√
−d) with d > 0 (or its generalizations called CM fields), there is an answer to it. This

is Shimura-Taniyama’s celebrated complex multiplication theory for abelian varieties (which are
generalizations of elliptic curves). See this wikipedia page if you can.

A good reference for this is D. Cox’ book “Primes of the form x2 + ny2”. You can find a copy of
it here.

https://math.stackexchange.com/questions/4544/why-is-e-pi-sqrt163-almost-an-integer
https://en.wikipedia.org/wiki/Kronecker%27s_Jugendtraum
https://www.math.utoronto.ca/~ila/Cox-Primes_of_the_form_x2+ny2.pdf
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